If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+10x-43=0
a = 9; b = 10; c = -43;
Δ = b2-4ac
Δ = 102-4·9·(-43)
Δ = 1648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1648}=\sqrt{16*103}=\sqrt{16}*\sqrt{103}=4\sqrt{103}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{103}}{2*9}=\frac{-10-4\sqrt{103}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{103}}{2*9}=\frac{-10+4\sqrt{103}}{18} $
| (77/2)-(p/2)=(p/4)-(5/4) | | 6x+(5x10)=56 | | 1/x+1/x+5=9/100 | | 8p=123456 | | -0,3m-1,7m=2-1,7 | | 7343+9284=x | | -3.2x+1.2=-14.8 | | 6/5z=5 | | 5p=456 | | 4/6z=-3 | | 1x(5x+2)=6 | | 7=-3(23-m)+2(m-2) | | 3(x+3.33)=2x | | 5x-(20/10)=8 | | 1x(11x-2)=11 | | 553x+23=5000 | | 4x+15-20=35 | | -10+10(w-12)=3 | | 2(x-3)^2+6=86 | | 100z=1000 | | 2(x-3)^2=86 | | -9x+35=10 | | 90x-46=224 | | (1x+5)(1x-3)=5 | | 30/80=20x | | 5x+140=8x+151 | | (1m+5)(3m+4)=3(1m+2)-2 | | 3r=3,5+r= | | 5x-9+7x=4x+9 | | 1x^2+7x=-11 | | 3(x+2)=5(x+10) | | -28=k+3 |